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Abstract 

The order batching problem (OBP) is the problem of determining the number of orders to 

be picked together in one picking tour. Although various objectives may arise in practice, 

minimizing the average throughput time of a random order is a common concern. In this 

paper, we consider the OBP for a 2-block rectangular warehouse with the assumptions that 

orders arrive according to a Poisson process and the method used for routing the order-

pickers is the well-known S-shape heuristic. We first elaborate on the first and second 

moment of the order-picker's travel time. Then we use these moments to estimate the average 

throughput time of a random order. This enables us to estimate the optimal picking batch 

size. Results from simulation show that the method provides a high accuracy level. 

Furthermore, the method is rather simple and can be easily applied in practice. 

Keywords Logistics, Warehousing, Order Picking, Order Batching. 

 

1. Introduction  

Order picking, the process of retrieving items from their storage locations to fill customer 

orders, is known as the most time-consuming and laborious component of the warehousing 

activities (Tompkins et al., 1996). Recent trends in distribution logistics and manufacturing 

have increased the importance of order picking. In distribution logistics few-but-large 

quantity orders are being replaced by many-but-small orders, which have to be processes in 

very tight time windows. In manufacturing, there is a move to smaller lot-sizes, point-of-use 

delivery, and cycle time reductions. These changes make rapid and flexible order picking 

becoming a crucial issue for many warehouse-related companies to sustain in today’s 

competitive. This fact induces the order picking operations to become a strong candidate for 

productivity improvement studies.  
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There are four essential factors that greatly influence the performance and efficiency of 

the order picking operation. They are: (a) layout of the warehouse, (b) the routing and sorting 

policy, (c) the storage strategy and (d) the batching method (Petersen, 1997). In the literature, 

the routing and layout problem already received much attention. Recent research (see 

Roodbergen and De Koster 2001a) has shown that the optimal routing policy for a warehouse 

with multiple cross aisles can be found by using dynamic programming. The research has 

also shown that good layouts can be developed to minimize throughput times. The influences 

of storage strategies on the average travel distance are investigated in Caron et al. (1998) and 

Petersen and Schmenner (1999). However, the batching problem, especially for the case of 

multiple-block warehouses, has not been considered thoroughly.  

The order batching problem (OBP) concerns the decision of how to group orders and then 

to assign them to order-pickers. Nowadays online retailing companies that focus on 

specialized product types ( such as books, computers or CD's etc. ) often receive orders with 

only one or few order lines (or stock keeping units - SKUs). If the order-picker starts a tour 

for every order, the capacity may even be insufficient to serve all orders. If the order-picker 

waits to have a sufficiently large number of orders, the average time in system of the orders 

may be longer than desired. Clearly, we can increase the efficiency of the order picking 

process in such environments by serving a group of orders instead of individual orders. The 

critical issue is, therefore, to determine how many orders the order-picker should serve in a 

tour to minimize the average throughput time of a random order. 

In the literature, there are several articles in which the OBP is discussed. However, the 

nature of the OBP in these publications is not always the same. Many of them focus on the 

OBP in single-aisle automatic storage and retrieval systems (e.g. Elsayed and Lee, 1996, 

Elsayed et al., 1993, Hwang et al., 1988) while some others concentrate on batching methods 

in multiple-aisle manually-picked systems (e.g., Gibson and Sharp, 1992, De Koster et al., 

1999 and Gademann et al., 2001). These publications focus on one of the following objective 

functions: (a) minimizing the average travel distance of orders and thereby throughput time; 

(b) minimizing the maximum lead-time of any of the batches; (c) minimizing the total 

earliness and tardiness penalties of order retrievals. In this research, we are interested in 

manual order picking environments, and minimizing the average throughput time of a 

random order This objective is well-known and most commonly used in the order picking’s 

literature (Gibson and Sharp, 1992, Rosenwein, 1996, Caron et al., 1998, Chew and Tang, 

1999, Roodbergen and De Koster, 2001a,b, and many others). We now briefly mention the 

most recent and/or closely related works on the subject. 
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Rosenwein (1996) proposes an order batching heuristic in a single-block warehouse. The 

main idea of this heuristic is assigning orders, one by one, to a picking tour until either the 

tour capacity constraint is encountered or the list of unassigned orders is empty. The first 

order in a batch, the seed order, is chosen randomly among unassigned orders. Further orders 

are added, one by one, to the batch according to one of two additional order selection rules. 

The first rule selects the order based on the order's center of gravity, while the other chooses 

the order that minimizes the number of additional aisle to be visited.  

De Koster et al. (1999) perform a comparative study for order batching heuristics in 

multiple-aisle picker-to-part warehouses. They consider two groups of heuristics: Seed 

algorithms and the somewhat more complex (and CPU time consuming) called Time Savings 

algorithms. The performance of the algorithms is evaluated using two different routing 

strategies: the S-shape and the largest-gap strategy. The heuristics are compared for travel 

time, number of batches formed and also for the applicability in practice. They conclude that: 

(a) even simple order batching methods lead to significant improvement compared to the first 

come first serve batching rule; (b) the Seed algorithms are best in conjunction with the S-

shape routing method and a large capacity of the pick device, while the Time Savings 

algorithms perform best in conjunction with the largest gap routing method and a small pick-

device capacity. 

Gademann et al. (2001) address the problem of batching orders in a warehouse with the 

minimization of the maximum lead-time of any of the batches as objective. This objective is 

common in parallel (or zoned) wave order-picking operations. They propose a branch-and-

bound algorithm to solve this problem exactly. A lower bound for the branch-and-bound is 

obtained by using a 2-opt heuristic. As the OBP is NP-hard, finding the optimal batching 

solution for large-scale problems is time consuming. However, they claim that the 2-opt 

heuristic appears to be very powerful; it provides very tight lower bounds. Therefore, they 

believe that a truncated branch-and-bound algorithm would suffice in practice. 

 All above order batching algorithms treat the demand as a deterministic variable; the 

profile of orders (number of orders, order lines in each order, quantity per each order line 

etc.) are assumed to be known at the beginning of each planning period.  Considering the 

stochastic nature of the order arrivals and service time, Chew and Tang (1999) model the 

OBP for a single-block warehouse as a queueing model and apply a series of approximations 

to calculate the lower bound, upper bound and an approximation value for the average 

throughput time. The limitation of this research is that they consider the average throughput 
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time of the first order in a batch as estimation for the average throughput time of individual 

orders in the batch. Our research is mainly based on the approach given in this article. 

However, it distinguishes from Chew and Tang’s research in two aspects. First, we consider a 

different layout (2-block warehouse), which can be found commonly in practice. Second, we 

perform a direct analysis on the average throughput time of a random order. 

 As we have seen, the existing literature shows that the OBP in the case of multiple-block 

manually-picked warehouses has received little attention despite its wide application (i.e. 

there is no publication in which the OBP in 2-block warehouses is mentioned). To fill this 

gap, in this study we consider a 2-block layout as depicted in Fig. 1. As shown in Roodbergen 

and De Koster (2001b), a layout with a middle aisle (2-block) often results in a lower average 

travel time than the layout without a middle aisle (single-block). We first elaborate on the 

first and second moment of the order-picker's travel time. Then we use these moments to 

estimate the average throughput time of a random order. This enables us to estimate the 

optimal picking batch size (i.e. the number of orders to be served in one picking route). .  

We initially use the following assumptions, some of which will be relaxed later.  

(1) Order pattern: arrivals of orders follow a Poisson process and every order contains 

one order-line (quantity per order line can be greater than 1). We presume that the 

storage capacity of a storage location is sufficiently large: to pick up one order line 

the order-picker has to visit only one storage location.  

(2) Service: we consider only  one order-picker and the service is carried out per batch of 

exactly k  orders. The order-picker’s capacity is sufficiently large to handle multiple 

( k ) orders per route.  

(3) Routing method: the used routing method is the S-shape (or traversal) heuristic. 

Routing order-pickers by using the S-shape policy means that any aisle containing at 

least one pick is traversed entirely (except potentially the last one in each block). 

Aisles without pick are not entered. From the last picked aisle, the order-picker 

returns to the depot (see Fig. 1 for an example of the S-shape route). This method is 

one of the simplest routing methods, included in nearly every warehouse management 

software system, and widely used in practice (see Roodbergen and De Koster 2001a ).  

(4) Storage policy: we use a random storage strategy, which means that incoming 

products are randomly located to empty storage spaces. 

(5) Batching rule: batching is carried out on a first come first server basis; we assume that 

the system is empty at the beginning. 
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As it is also the aim of the research to deal with real-life applications, some of these 

assumptions are relaxed later on (when we discuss the possibility of including compound-

Poisson arrivals, multiple order-pickers and class-based storage assignment into the model). 

[Insert Fig. 1 about here] 

This paper is organized as follows. In the next section, we estimate the first and second 

moment of travel time to pick up n  order lines. In Section 3, we present an approach to 

estimate the average throughput time of the real system from the appropriate queueing 

systems. We present some numerical results and discussions in Section 4. In Section 5, we 

mention some possible extensions of the model to cope with more complicated situations. 

Finally, in Section 6, we draw some conclusions and give outlooks on further research.    

2. Travel time estimation 

In order to estimate the throughput time, it is necessary to find the first and second 

moment of travel time. We use the following common notations: 

d  length (in travel time units) of a pick aisle. 

aw  width (in travel time units) of the cross aisle. 

cw  center-to-center distance  (in travel time units) between two adjacent pick 

aisles. 

n  total number of order lines to be picked in a tour. 

m  number of pick aisles, it is an even integer. 

WATR  travel time caused by traversing the pick aisles. 

CATR  travel time caused by traversing the cross aisle.  

zAT   Adjustment time; z  can be + , −  or ≈  (upper, lower bound or average value).  

[ ]E X  expected value of X . 

ip  probability that a random order line is picked from aisle ( 1.. )i i m= ; ip =  

1/ m  ( 1.. )i m=  for the random storage strategy. 

sτ  setup time per batch. 

pτ  picking time per order line. 

The order travel route is sketched in Fig. 1. Starting from the depot, the order-picker (he) 

travels to the nearest pick aisle containing picks, either in the left or right block. Aisle by 
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aisle, he travels to the farthest pick aisle in the same block in such a way that all visited aisles 

are completely traversed. After accomplishing all pick requests in the first block, he moves to 

the farthest requested pick aisle in the second block. In a same manner but in the downward 

direction, he picks while going from the farthest to the nearest aisle containing picks. From 

there, he goes back to the depot to complete the tour. It should be noticed that it does not 

matter which block is served first, as in both cases we encounter the same travel distance. 

Furthermore, it is obvious that picking block by block usually provides a shorter (or at least 

equal) travel distance than picking in two blocks simultaneously.  

2.1. First moment of travel time 

The average travel time consists of three components: 'within aisles' travel time ( WATR ), 

'cross aisle' travel time ( CATR ) and 'adjustment time ( AT ). Without loss of generality, here 

we assume that the order-picker travels at a constant speed. We define: 

[ ]z zE TR E TR AT⎡ ⎤ = +⎣ ⎦ , where [ ]E TR =  [ ] [ ]WA CAE TR E TR+  and z  can be – (lower 

bound), + (upper bound) or ≈  (approximation). 

The adjustment time AT  consists of two components: 1AT  and 2AT . 1AT  is the travel 

time from the central line of the cross aisle to the beginning of the first pick aisle and the 

travel time from the end of the last pick aisle to the central line of the cross aisle. 2AT  is the 

correction of travel time if the last visited aisle in each block is odd (pick aisles are numbered 

from 1 to m  clockwise as shown in Fig. 1). In the following, we will determine the expected 

value WATR , CATR  and AT  given that the pick list contains n  order lines (in our case, each 

order consists of only one order line thus n k= ). 

With the S-shape routing method, the expected within-aisle travel time depends only on 

the length of pick aisle d  and the expected number of aisles visited [ ]|E J n . Chew and Tang 

(1999) show that given n  and the number of pick aisles m : 

[ ] { } ( )
1 1

| | | 1
m m

n
WA i

j i
E TR n dE J n d jP J j n d m p

= =

⎛ ⎞⎡ ⎤ = = = = − −⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠
∑ ∑ , 

where the term in brackets is the expected number of visited aisles.  

On the other hand |CAE TR n⎡ ⎤
⎣ ⎦  is the doubled travel time from the depot to the farthest 

visited  aisle. It is determined by the travel time between two neighboring pick aisles, cw , 
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and the position of the farthest visited aisle L . If we consider two pick aisles opposite the 

cross aisle as one pick line (see Fig. 1) then we can make use of the formula for estimating in 

the |CAE TR n⎡ ⎤
⎣ ⎦  in single-block warehouses given in Chew and Tang (1999): 

{ }
/ 2 / 2 1

1 1 1
| 2 | 2 2

nm m l

CA c c r
l l r

E TR n w lP L l n w m p
−

= = =

⎡ ⎤⎛ ⎞⎢ ⎥⎡ ⎤ ′= = = − ⎜ ⎟⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ , 

where 2 1 2r r rp p p−′ = +  is the probability that the pick line ( 1.. / 2)r r m= is visited.  

For the first adjustment term, we can see that if only a half of the warehouse (one block) 

is visited then ( )1 2 2a aAT w w= =  (it is doubled because whenever the order-picker enters 

an aisle he has to leave the aisle). If both halves of the warehouse are traversed then 

1 2CR wa= . Hence, we can determine the conditional expected value of the first correction 

term: 

( ) ( ) ( )1 | 2*0.5 2 1 2*0.5 2 1 0.5n n n
a a aE AT n w w w⎡ ⎤ = + − = −⎣ ⎦ . 

The second adjustment term takes into account the fact that from the last pick position (in 

the last visited aisle) in each block, the order-picker has to return to the center line of the 

cross aisle. It is easy to verify that 20 2AT d≤ ≤ . The expected value of 2AT , 2 |E AT n⎡ ⎤
⎣ ⎦ ,  

can be estimated by formula B1 (see Appendix B) 

From all estimates above, we now can come up with the following expressions of travel 

time: 

[ ] ( )
/ 2 1

1 1 1
| 1 2 2

nm m l
n

i c r
i l r

E TR n d m p w m p
−

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥′= − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑  

[ ]| | aE TR n E TR n w−⎡ ⎤ = +⎣ ⎦ , 

[ ] ( )| | 2E TR n E TR n d wa+⎡ ⎤ = + +⎣ ⎦ ,  

[ ] ( ) 2| | 2 1 0.5 |n
aE TR n E TR n w E AT n≈⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦ . 

We used Visual Basic for Application (VBA) on Microsoft Excel to simulate the system. 

In the simulations, we considered 3 layouts: 6, 10 and 16  aisles (see Table 1 for other layouts 

parameters). Batch size varied from 10 to 60 orders (i.e. number of locations that an order-

picker has to visit in one tour is from 1 to 60). The average travel-time value of 10000 runs 

was taken as the simulation result, this number of runs is sufficient to obtain a 98% 
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confidence interval with a half-width of less than 1% of the sample mean. We found that, in 

the worst case, the difference between the approximated travel time and simulation outcome 

is less than 10 percent. For all layouts, the difference rapidly decreases when the batch size 

increases. When the batch size is greater than 40, the difference between approximation and 

simulation value is less than 2 percent. 

When we know the first moment of travel time, it is rather straightforward to compute the 

first moment of service time. We call ( | )zE S n  the first moment of service time given the 

batch size n , where z  can be the approximation, lower bound or upper bound notation. We 

assume that the setup time of a batch, sτ , is independent from the batch size. The picking 

time per order line, pτ , is identical for all order lines.  It follows that: 

| |z z
s pE S n n E TR nτ τ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ . 

2.2. Second moment of travel time 

Without considering the correction time (CR ), the second moment of travel time can be 

formulated as  

( ) ( ) [ ]22 2 2 2| | 2 | 2 2 |c cE TR n d E J n w E L n w dE JL n⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .    (1) 

Chew and Tang (1999) calculated 2 |E J n⎡ ⎤
⎣ ⎦  and 2 |E L n⎡ ⎤

⎣ ⎦  for the single-block layout. 

However, their result for 2 |E J n⎡ ⎤
⎣ ⎦  still holds for the case of two blocks. For 2 |E L n⎡ ⎤

⎣ ⎦ , if 

we consider pick lines instead of pick aisles (see Fig. 1) then their formula can be easily 

adapted. Hence, we have: 

( )( ) ( )
1

2 2

1 1 1
| 2 1 1 2 1

m m mn n
i i r

i i r i
E J n m m p p p

−

= = = +

⎡ ⎤ = − − − + − −⎣ ⎦ ∑ ∑ ∑  ,  (2) 

( ) ( )
2 1

22

1 1
| 2 2 1

nm i

r
i r

E L n m i p
−

= =

⎛ ⎞⎡ ⎤ ′= − + ⎜ ⎟⎜ ⎟⎣ ⎦
⎝ ⎠

∑ ∑ ,   (3) 

where 2 1 2 , 1.. / 2r r rp p p r m−′ = + = . 

[ ]|E JL n  is the term that describes the interaction between the number of aisles visited 

and the farthest pick line. It can be calculated by 

[ ] { }
/ 2 2

2 2 1
1 1

| , 0, ... 0 |
m l

l l m
l j

E JL n l jP J j X X X n+
= =

⎛
⎜= = > = = = +
⎜
⎝

∑ ∑  
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{ }
2 1

2 1 2
1

, 0, ... 0 |
l

l l m
j

jP J j X X X n
−

−
=

+ = > = = =∑  

                   ( )
( )

( )
( )2 1 2 1/ 2 2 2

* **

1 1 1 1 1
2 1 2( 1) 1

nn l lm l l n n
r i r i

l r i r i
l p l p p l p

− −

= = = = =

⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎢ ⎥= − − − − − −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎝ ⎠
∑ ∑ ∑ ∑ ∑  , (4) 

where 1iX =  if pick aisle i  is visited and 0iX = otherwise. 2*
1

l
i i jjp p p

=
= ∑  and **

ip =  

2( 1)
1
l

i jjp p−
=∑  (details of the proof can be found in the Appendix A). Subsequently, 

2 |E TR n⎡ ⎤
⎣ ⎦  can be computed by substituting (2)-(4) into (1). We can see that TR  differs from 

TR+  and TR−  only by constants, thus their variances are identical: 

[ ] [ ]( )22 2 2 2| | | | |TR n TR n TR n E TR n E TR nσ σ σ+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

However, TR≈  does not differ from TR  by a constant. To make things easier, we assume that 

[ ]2 2| |TR n TR nσ σ≈⎡ ⎤ =⎣ ⎦ . 

For a given number of order lines per batch n , the variance of service time [ ]2 |S nσ  is 

just the summation of the variance of travel time and the variance of picking time, since the 

setup time is constant and the picking time is independent of the travel time. And, since the 

arrival of orders follows a Poisson distribution, the variance of the picking time simply equals 
2
pλτ . Hence,  

( ) ( )( )( )222 2| | |z
pS n E TR n E TR nσ λτ⎡ ⎤⎡ ⎤ ⎡ ⎤= − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ,  

where z  can be the approximation, lower bound or upper bound notation. 

3. Throughput time analysis for / /1kM G  queueing model 

Due to stochastic natures of both order arrivals and service time, a natural way to deal with 

the OBP, which  has been discussed, is to model the order picking process as a queueing 

system. With the assumptions made earlier, our problem can be modeled as an / /1kM G  

queue. Where kG  denotes that the service is performed per batch of exactly k  orders and the 

distribution function of the service time has a general form. M  implies that order inter-

arrival times are exponentially distributed random variables. In other words, the OBP in this 
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case can be considered as the problem of determining the optimal service batch size for the 

/ /1kM G  queue such that the average throughput time of a random customer is minimized.  

In the literature, there are only few publications in which this type of queue is thoroughly 

studied. Foster and Perera (1964) show that the probability generating function of the system 

size at random epochs ( )P z  can be expressed by the following formula: 

1

1

( )
(1 )(1 )

(1 )
( )

1
( )

k
jk

j j
k

z
z

k
P z

z
K z

δρ
δ

−

=

−
− −

−
=

−

∏
, (5) 

where { })1()( zzK −= λψ  is the Laplace-Stieltjes transform of the cumulative service time 

distribution function. λ  is the arrival rate, λρ
µ

=  is the utilization rate.  ( )1 |E S kµ =  is the 

service rate of a batch consisting of k  orders. jδ , with 1,.., ( 1)j k= − , are ( 1)k −  roots inside 

the unit circle of the characteristic equation ( )kz K z= . It follows from Rouche's theorem that 

this equation has exactly ( 1)k −  roots inside the unit circle (detailed explanations can be 

found in Gross and Harris, 1998, p. 282). In normal integral form 

( ) ( ) ( )
0 !

jt

j

e t
K z dH t

j

λ λ−
∞

=
= ∫ , where ( )H z  is the cumulative distribution function of service 

time. Analogue versions of this formula can be seen on Chaudhry et al. (1987) or Chaudhry 

(1991). If we know the form of the service time then the steady-state probability { }np  can be 

theoretically obtained by successive differentiation of )(zP . Nevertheless this work is 

cumbersome when k  becomes large. 

Chaudhry (1991) is also interested in this queue and he provides a closed-form expression 

in term of the roots of certain characteristic equations for computing the average queueing 

time of orders. However, he only considers the queueing time of the last customer in the 

service batch, which, certainly, differs from the waiting time of a random customer. Another 

type of queues that is also considered in the same article is [ ],/ /1a bM G . In this queue, 

services can be performed as soon the number of orders waiting in the queue reaches the 

lower threshold a  (b  is the capacity of the server, a b≤ ). Chaudhry et al. (1987) discuss a 

numerical computation approach to compute the steady-state probability of this system. 

However, from a practical point of view, this approach is rather complicated to use. In order 

to obtain steady-state probabilities, we first have to find the roots of the characteristic 
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equations and than successively take the derivative of the steady-state probability. This 

requires tremendous computational efforts, especially when the batch size is large.   

Apparently, it is too difficult, from a practical point of views, to compute exact results for 

the / /1kM G  queue. Furthermore, for the sake of the OBP, it is not necessary to find an 

extremely accurate throughput time. Therefore, in this research we are interested in finding a 

good and easy-to-compute approximation for the average waiting time of a random order. We 

use the well-known 2-moment approximation formulation (see, for example, Tijms, 1994, p. 

335): 

( )2 2
/ /1 / /1 / /1

1k k kS SM G M D M M
W c W c W= − + , 

where [ ] [ ]2 2 2| |Sc S k E S kσ=  is the squared coefficient of variation of the service time; 

/ /1kM M
W  and 

/ /1kM D
W  denote the average throughput time of orders (or waiting time in the 

system of a random order) when the service time distribution is exponential and deterministic 

respectively. As recommended in Tijms (1994), this method performs very well in the case 

that 2
Sc  is not very high and the traffic density ρ  is not very low. 

When the service time is exponential, we have (Gross and Harris, 1998, p.125): 

( )

1 2 1 1
0 0 0 0 0

02/ /1
10

( ) ( )1 1
2 1

k

k k k k k
k

M M
k

r r r r rkW kr
k kr

λ µλ
λ µ µ

− − − − −

=

⎡ ⎤⎛ ⎞− − −−
= + +⎢ ⎥⎜ ⎟

−⎢ ⎥⎝ ⎠⎣ ⎦
∑ , 

where 0r  is the unique root of the characteristic equation ( )1
0 0 0kr rµ λ µ λ+ − + + = .  

When the service time is deterministic it can be shown that (1 )( ) zK z e ρ− −= . Substituting 

this into (5) we have: 
1

1

(1 )

( )
(1 )( )

(1 )
( )

1

k
jk

j j
k

z

z
z k

P z
zk

e ρ

δ
ρ

δ

−

=

− −

−
− −

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

∏
,  (6) 

where jδ , ( )1,.., 1j k= − , now become ( )1k −  roots inside the unit circle of the equation 

(1 )k zz e ρ− −= . In the literature, several solution methods have been proposed for finding roots 

of this equation. The common technique used is transforming the equation into ( )1 2k⎡ ⎤−⎢ ⎥  

independent equations, each of which has only one root inside the unit circle. These roots and 

their conjugate roots form ( 1)k −  roots we need (literature on this topic can be found in 
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Chaudhry et al., 1987 and 1990).  When ( )1k −  roots of the equation are known, we can find 

/ /1kM D
W  by taking the limitation of )(zP  when z  reaches 1: ( ) 1/ /1

1
k zM D

dW P z
dzλ == . We 

note that, for 1z = , ( )P z  is indeterminate of the 0 / 0  form. Therefore, we proceed as 

follows. Let ( )N z  and ( )D z  denote the numerator and denominator of the right-hand side 

of Equation (6) respectively. Then we use the following well-known result in queueing theory 

(see Madan, 2000): 

( ) ( ) ( ) ( ) ( ) ( )
( )( )1 2/ /1

1 1 1 11 1 11
2 1

k zM D

N D D NdW P z P =
dz Nλ λ λ=

′ ′′ ′ ′′−
′= =

′
. 

As mentioned earlier, successive differentiations are cumbersome when the batch size is 

large; but in this case, we only need to take the first order derivation of the generating 

function. The derivative operator is available in many common mathematical software 

packages (such as Maple or Matlab). These make it possible to carry out a numerical analysis 

for the value of 
/ /1kM D

W , even for very high values of the batch size. 

4. Numerical examples 

In order to illustrate the procedure, we consider 3 warehouses with parameters given in 

Table 1. Fig. 2 shows the throughput times of the deterministic, exponential and general form 

service time model for different warehouses (the service time is estimated by the 

approximation method described in Section 2). As a consequence, the approximation is close 

to the exponential curve when the squared coefficient of variation is close to 1, and to the 

deterministic curve when the squared coefficient is close to zero. In the figure, it can be seen 

that the approximation curve is extremely close to the deterministic curve when the batch size 

is large. This is due to the fact that the squared coefficient of variation is almost zero for large 

batch sizes. It suggests us that the deterministic model is a good approximation for the 

general service time queue. This result is in line with the finding, for the case of single-aisle 

warehouses, mentioned in Le-Duc and De Koster (2002).  

[Insert Table 1 about here] 

It should be noted that, to satisfy the equilibrium condition, the batch size can only be defined 

on a semi-bounded interval ),k −⎡ ∞⎣ , where k −  is a minimum batch size value such that the 

traffic density, kλ µ , is less than 1.   
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[Insert Fig. 2 about here] 

For the comparison purpose, we used the AutoMod simulation package to simulate the order 

picking system. In the experiment, the average throughput times were taken after a run length 

of 30 hours (warming up time was 4 hours, determined by using AutoStat – a tool 

accompanying AutoMod for batch running and statistical analyses). Fig. 3 shows the 

simulation results together with the expected lower bound, upper bound and approximation 

value of the throughput time for the layout with 6 aisles (we mention only one case as other 

cases - 10 and 16 aisles- bring in similar pictures). The lower bound, upper bound and 

approximation of throughput time are correspondingly determined by the lower bound, upper 

bound and approximation of service time. For example, in order to find the lower bound of 

the throughput time, we first estimate the lower bound of the first and second moment of 

service time. Then using these moments we calculate the throughput time of the deterministic 

and exponential service time queue. Finally, we use the 2-moment approximation formula to 

obtain the lower bound of the throughput time.  

[Insert Fig. 3 about here] 

We can draw the following conclusions from the numerical experiments. First, the shapes of 

the curves confirm the finding of Chew and Tang (1999) when they considered single-block 

warehouses. The average throughput time is a convex function of the batch size and a unique 

optimum batch size exists. When the batch size increases from the lower bound, the average 

throughput time decreases and it rapidly reaches its optimum. From that, it increases. The 

existence of the optimum can be explained as follows: batching many orders may reduce the 

travel time (reducing the distance of traversal without picking), but increases the batching 

time (waiting time of an order needed to complete a batch), and the waiting time of batches in 

the queue due to the large service time.  Second, the bounds are tight, especially when the 

batch size is large. It means that the approximation provides sufficient accuracy in estimating 

the average throughput time of a random order. This result is in accordance with the finding 

of Chew and Tang (1999) for single-block warehouses. Third, the optimal batch size is 

relative small; close to its lower bound. It means that we need not to search the optimum 

batch size on a large interval. This is an importance remark, as it can help to reduce the 

searching time significantly. Perceiving this, we propose a greedy procedure for determining 

the optimal batch size as follows. We first estimate the lower bound of the batch size. From 

this value we each time increase the batch size by 1. The optimal batch size is the value that 
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first makes the average throughput time (determined by two moment approximation 

approach) increase. 

5. Some possible extensions of the model 

We have considered the order picking process with single-line orders, a single order-

picker and the random storage strategy. This can be considered as the basic model and it can 

be extended in several directions.  

As the first extension, we can consider multiple order-pickers instead of a single one. 

Under this situation, the order picking process can be modeled as a batch processing and 

multi-server queue: 
/ /kM G c

W , where c  is the number of servers (or order-pickers). It is too 

difficult, if not impossible, to find the exact results for this type of queues. However, in the 

literature, a simple method exists for finding the bounds of the average waiting time of a 

multi-server queue from its corresponding single server queue (see, for example, Gross and 

Harris, 1998, p. 340). According to their method, the lower bound of 
/ /kM G c

W  can be found 

by assuming 
/ /kM G c

W  is equivalent to 
/ /1kM G

W  where the service rate is c  times faster. The 

upper bound can be obtained by assigning batches in cyclic order to the c  servers with no 

jockeying allowed (first batch to sever 1, second batch to server 2, ..., ( 1c + )st to server 1, 

...). Then each server faces a single queue, in which the inter-arrival time is the c -fold 

convolution of the original inter-arrival distribution, with no change in the service time 

process. The waiting time of a random batch taken from one of these queues provides an 

upper bound for the multi-server queue. These bounds are very useful: we can use them to 

interpolate the expected value of the throughput time. One reasonable value of the throughput 

time could be the average value of the lower and upper bound. 

The second extension could be that we consider the class-based (or ABC) storage strategy. 

As mentioned earlier, when the random storage strategy is used, 1/ ( 1.. )ip m i m= = , where 

ip  is the probability that aisle i  is visited. When the ABC storage strategy is used, there are 

two possibilities, depending on whether partial-aisle assignment is allowed or not. A partial-

aisle assignment means that we can store different product classes in the same aisle, while in 

the other cases product class is stored in one or more entire aisles. Our model already 

captures the latter case, because in the calculations we use the general expression of ip ( ip  

can differ from 1/ m ). It is also possible to consider the partial-assignment case. However, the 
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expression for the second moment of the travel time may become very complicated (see Le-

Duc and De Koster, 2002).   

In many cases, orders may consist of more than one order line. Thus, another interesting 

extension could be that we consider compound-Poisson arrivals instead of Poisson arrivals. 

The order picking process can then be modeled as the compound-Poisson arrivals with batch 

service queue. For this type of queues, it is still possible to trace the expected waiting time if 

both moments of the service time are known. Unfortunately, again it is very tough to come up 

with a closed-form formulation for the second moment of service time. We suggest that we 

approximate this system by / /XM G c , where ( )X kE a=  with ( )E a  is the expected number 

of order lines per order. This means that we can still apply / /XM G c  queue to estimate the 

optimal number of order lines per batch  and than based on this value and ( )E a  to determine 

the ‘optimal’ number of orders to be included in a batch. 

6. Conclusions 

In this paper, we focus on finding a simple but efficient approach for determining the 

optimal picking batch size for order-pickers in a typical 2-block warehouse. In order to do so, 

we first extend the results given in Chew and Tang (1999) for single-block warehouses to 

estimate the first and second moment of the service time. Then, we use these moments to 

estimate the waiting time of a random order based on the corresponding batch service 

queueing model. The optimal picking batch size is then determined in a straightforward 

manner. Results from the simulation experiments show that our approach provides a good 

accuracy level. Furthermore, the method is very simple; it can be easily applied in practice. 

The study also supports that the average waiting time of a random order is a convex function 

of the batch size. As a result, there always exists a unique optimum picking batch size. This is 

in accordance with the finding of Chew and Tang (1999) and Le-Duc and De Koster (2002).  

As the optimum batch size is always close to its lower bound (obtained from the traffic 

density condition), we propose a simple greedy heuristic procedure, which can be used to 

search for the optimum in a negligible computational time.  

The order picking system that we considered is a simple one; we can extend it in several 

directions. It is rather easy to include multiple order-pickers. However, in general it is rather 

difficult to capture compound-Poisson arrivals or other storage strategies and different 

layouts. These topics issue a challenge for us to investigate in the future. 
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Appendix A 

We use the following definitions: 

L l+= :  the farthest pick line is pick line l  and pick aisle 2l  is visited, 

L l−= :  the farthest pick line is pick line l  and pick aisle 2l  is not visited. 

1     if pick aisle i is visited
0     otherwiseiX
⎧

= ⎨
⎩

 

( ) { } { }
/ 2 2 2 1

1 1 1
| , | , |

m l l

l j j
E JL n l jP J j L l n jP J j L l n

−

+ −
= = =

⎛ ⎞
⎜ ⎟= = = + = =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑  

{ }
/ 2 2

2 2 1
1 1

, 0, ... 0 |
m l

l l m
l j

l jP J j X X X n+
= =

⎛
⎜= = > = = = +
⎜
⎝

∑ ∑  

                    { }
2 1

2 1 2
1

, 0, ... 0 |
l

l l m
j

jP J j X X X n
−

−
=

⎞
⎟+ = > = = =
⎟
⎠

∑    (A.1) 

Applying the inclusion-exclusion rule, we have: 

{ }2 2 1, 0, ... 0 |l l mP J j X X X n+= > = = =  

{ } { }2 1 2, 0,..., 0 | , 0,..., 0 |l m l mP J j X X n P J j X X n+= = = = − = = =  

{ } { }2 1 2 1| 0,..., 0, * 0,..., 0 |l m l mP J j X X n P X X n+ += = = = = =  

{ } { }2 2| 0,..., 0, * 0,..., 0 |l m l mP J j X X n P X X n− = = = = =  

 Thus,  

{ }
2

2 2 1
1

, 0, ... 0 |
l

l l m
j

jP J j X X X n+
=

= > = = =∑  

{ } { }

{ } { }

2

2 1 2 1 2 1
1

2 1

2 2
1

| ... 0, * 0, 0,... 0 |

| ... 0, * ... 0 |

l

l m l l m
j

l

l m l m
j

jP J j X X n P X X X n

jP J j X X n P X X n

+ + +
=

−

=

= = = = = = = =

− = = = = = = =

∑

∑
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{ }

2 2

2 1
1 1

2 1 2 1

2
1 1
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| ... 0,

nl l

r l m
r j

nl l

r l m
r j

p jP J j X X n

p jP J j X X n

+
= =

− −

= =

⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
− = = = =⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
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Similarly,  

{ }
2 1

2 1 2
1

, 0, ... 0 |
l

l l m
j

jP J j X X X n
−

−
=

= > = = =∑

{ }
2 1 2 1

2
1 1

| ... 0,
nl l

r l m
r j

p jP J j X X n
− −

= =

⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑  

{ }
2( 1) 2( 1)

2 1
1 1

| ... 0,
nl l

r l m
r j

p jP J j X X n
− −

−
= =

⎛ ⎞
− = = = =⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑ . 

The conditional expectation { }
2

2 1
1

| 0 ... 0,
l

l m
j

jP J j X X n+
=

= = = = =∑  is just the expected 

number of aisles visited given n  and aisles from 2l  to m  are not visited. From Chew and 

Tang (1999), this amount is ( )
2

*

1
2 1

l n
i

i
l p

=
− −∑ , where 2*

1
l

i i jjp p p
=

= ∑  is normalized 

probability. A similar argument holds for {
2( 1)

2 1
1

| ...
l

l
j

jP J j X
−

−
=

= = =∑  }0,mX n= . At this 

step, (A.1) can be simplified as follows: 

( ) ( )
( )

( )
( )2 1 2 1/ 2 2 2

* **

1 1 1 1 1
| 2 1 2( 1) 1

nn l lm l l n n
r i r i

l r i r i
E JL n l p l p p l p

− −

= = = = =

⎧ ⎫⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎪ ⎪⎜ ⎟ ⎢ ⎥= − − − − − −⎜ ⎟ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎪ ⎪⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎩ ⎭
∑ ∑ ∑ ∑ ∑ , 

where 2( 1)**
1
l

i i jjp p p−
=

= ∑ . 

Appendix B 

The second adjustment term ( 2AT ) takes into account the fact that from the last pick position 

in the last visited aisle in each block the order-picker has to return to the center line of the 

cross aisle. For each block, such a turn has to be made if and only if the block is visited and 

the number of visited aisles is odd. The probability that the turn occurs in one of the blocks 

and all i  picks fall into exactly g  aisles ( { }|1 2, is oddg G g m g∈ ≤ ≤ ) is: 

( )
2

2

im g X g
g m

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
, 
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where ( )X g  is 1 minus the probability that all i  picks fall into less than g  aisles, 

conditional on the fact that all i  order lines fall into at most g  specific aisles (see 

Roodbergen 2001): 

( ) ( )1 1

1
1 1

n
g i

i

g g iX g
g i g

− +

=

⎛ ⎞⎛ ⎞−
= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∑ . 

We call 1CR  and 2CR  are the correction time if the turn happens in only one and two blocks 

respectively. As items are randomly located within the warehouse, we assume that if g  aisles 

are visited then the expected order lines in each visited aisle will be n g . It then follows: 

( ) ( )1 :
2

2 0.5 2
2 1

n
n

g G odd

n
m g gCR X g d dng m

g
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= −⎜ ⎟⎜ ⎟
⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  
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2!0.5 2
! ! 2 1
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k
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−

∈
=
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2
2

2 1

n k

g G odd

n k
m g gX g d dn kg m

g

−

∈

⎫⎡ − ⎤⎛ ⎞
⎪⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞ ⎪⎢ ⎥⎜ ⎟− ⎬⎜ ⎟⎜ ⎟ −⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠ ⎪+⎜ ⎟⎢ ⎥⎪⎝ ⎠⎣ ⎦⎭

∑ , 

where 
( )

!0.5
! !

n n
k n k−

 is the probability that ( )1 1k k n≤ ≤ −  order lines fall into one block 

and ( )n k−  order lines into the other. 

Finally, the adjustment time due to making a turn if the number of visited aisles in a block 

is odd would equal: 2 1 2|E AT n CR CR⎡ ⎤ = +⎣ ⎦  (B1) 
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Fig. 1.   A 2-block warehouse layout with an S-shape pick route. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Average throughput time for different service time distributions (with the 

approximation value of the service time). 
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Fig. 3.  Average throughput time of a random order for the 6-aisle layout (W_LB is the 

approximated value of the average throughput time, by the 2-moment 

approximation, based on the lower bound value of the first and second moment of 

service time). 

 
 
 
 
Table 1.  Parameters for the simulation experiment. 

Attributes Quantities 
m  6, 10, 16 aisles 
λ  4 orders/ 10 minutes 
d  30 seconds 

aw  6 seconds 

cw  10 seconds 

sτ  180 seconds 

pτ  12 seconds 
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